If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3y^2)-14y+7=0
a = 3; b = -14; c = +7;
Δ = b2-4ac
Δ = -142-4·3·7
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{7}}{2*3}=\frac{14-4\sqrt{7}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{7}}{2*3}=\frac{14+4\sqrt{7}}{6} $
| 12-5x=6x | | n^2+30n+100=0 | | 169x=12x | | 7x^2+11x+882=0 | | 3x^2-11x-174=0 | | x^2+x-0,72=0 | | X-3x=180 | | (1-4x)(2+0.5x)^6=0 | | 10=-7s-(5-7s)+5 | | 7-5y=22 | | N2-n-150=0 | | -3x+4x=8 | | [4x-5=2(2x+1) | | 5x=4x-23 | | 3(2x=10)54 | | 0.12=0.5^(x/2736) | | 0.12=0.5^x | | 125=6x+1 | | s45=01+s^2 | | 12x/5=10 | | 2x-12+2x+x/2=1000 | | -21x^2-20x+4=4 | | 84=5t+1.5 | | 1.5t+14=0 | | 6,7x+5,1-39,8x-54,6=33,9-8,4x+71,3x+12,6 | | m-7=23 | | 8/12=x100 | | X+10x/100=110x/100 | | 180=5x-2+7x-11+2x-3 | | 4~a=3 | | -30=-3/4(x+4) | | 4y~{3+y)/y=2 |